2500^2=x^2+1666^2

Simple and best practice solution for 2500^2=x^2+1666^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2500^2=x^2+1666^2 equation:



2500^2=x^2+1666^2
We move all terms to the left:
2500^2-(x^2+1666^2)=0
We add all the numbers together, and all the variables
-(x^2+1666^2)+6250000=0
We get rid of parentheses
-x^2+6250000-1666^2=0
We add all the numbers together, and all the variables
-1x^2+3474444=0
a = -1; b = 0; c = +3474444;
Δ = b2-4ac
Δ = 02-4·(-1)·3474444
Δ = 13897776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13897776}=\sqrt{16*868611}=\sqrt{16}*\sqrt{868611}=4\sqrt{868611}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{868611}}{2*-1}=\frac{0-4\sqrt{868611}}{-2} =-\frac{4\sqrt{868611}}{-2} =-\frac{2\sqrt{868611}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{868611}}{2*-1}=\frac{0+4\sqrt{868611}}{-2} =\frac{4\sqrt{868611}}{-2} =\frac{2\sqrt{868611}}{-1} $

See similar equations:

| 1/2(3x+6)=1/3(18x-6) | | 3.75x+3.7=1.75x+1.7x | | 21/3x=21 | | -6+7=4z-3(z+6) | | 1/2(3x6)=1/3(18x-6) | | (x-3/2)5=10 | | 9=k=46 | | (2y-1)-6(y-2)+3=6 | | 0.05(10+x)=0.9 | | 3.75x+3.7=1.7+.75x | | 5(3x+7)=20+(x+1) | | 2(x–3)=2x | | 49j2–27j=0 | | 6.2/(2x+1)=0 | | 0.05(10+x)=0.75 | | 62.552r+6-2r=56 | | 10x+17x-8+2=-7x+2-8 | | 6r-34+2r-56.5=42 | | (y)/(2)-(y-4)/(5)=(23)/(10) | | 3×4/3+4=x | | 3(k-2)-2k=-3+8 | | 15y+3=30÷5 | | 3c+2=3c=2 | | (12(x^2))-288x+1152=0 | | 1728=4x*3x | | 7=3u+4 | | 5j+3-54j-5=24 | | 10x+17x-8+2=7x+2-8 | | 6.2/(2x+1)=2.333/4 | | 5x+16-x+(210)+4x=286 | | 6+5v=11 | | (x+7)^4=50 |

Equations solver categories